On the Solvability of an Inverse Fractional Abstract Cauchy Problem

نویسنده

  • Mahmoud M. El-borai
چکیده

This note is devoted to study an inverse Cauchy problem in a Hilbert space H for fractional abstract differential equations of the form; ), ( ) ( ) ( = ) ( t g t f t u A dt t u d    with the initial condition H u u = (0) 0 and the overdetermination condition: ), ( = ) ), ( ( t w v t u where (.,.) is the inner product in H , f is a real unknown function w is a given real function, 0 u , v are given elements in H , g is a given abstract function with values in H , 1 < 0   , u is unknown, and A is a linear closed operator defined on a dense subset of H . It is supposed that A generates a semigroup. An application is given to study an inverse problem in a suitable Sobolev space for general fractional parabolic partial differential equations with unknown source functions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Existence of Mild Solutions to a Cauchy Problem Presented by Fractional Evolution Equation with an Integral Initial Condition

In this article, we apply two new fixed point theorems to investigate the existence of mild solutions for a nonlocal fractional Cauchy problem with an integral initial condition in Banach spaces.

متن کامل

A Uniqueness Theorem of the Solution of an Inverse Spectral Problem

This paper is devoted to the proof of the unique solvability ofthe inverse problems for second-order differential operators withregular singularities. It is shown that the potential functioncan be determined from spectral data, also we prove a uniquenesstheorem in the inverse problem.

متن کامل

Degenerate Distributed Control Systems with Fractional Time Derivative1

The existence of a unique strong solution for the Cauchy problem to semilinear nondegenerate fractional differential equation and for the generalized Showalter–Sidorov problem to semilinear fractional differential equation with degenerate operator at the Caputo derivative in Banach spaces is proved. These results are used for search of solution existence conditions for a class of optimal contro...

متن کامل

Boundary temperature reconstruction in an inverse heat conduction problem using boundary integral equation method

‎In this paper‎, ‎we consider an inverse boundary value problem for two-dimensional heat equation in an annular domain‎. ‎This problem consists of determining the temperature on the interior boundary curve from the Cauchy data (boundary temperature and heat flux) on the exterior boundary curve‎. ‎To this end‎, ‎the boundary integral equation method is used‎. ‎Since the resulting system of linea...

متن کامل

Stochastic Solutions for Fractional Cauchy Problems

Every infinitely divisible law defines a convolution semigroup that solves an abstract Cauchy problem. In the fractional Cauchy problem, we replace the first order time derivative by a fractional derivative. Solutions to fractional Cauchy problems are obtained by subordinating the solution to the original Cauchy problem. Fractional Cauchy problems are useful in physics to model anomalous diffus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010